Substrate-dependent differences in production of extracellular matrix molecules by squamous carcinoma cells and diploid fibroblasts.
نویسندگان
چکیده
Two human squamous carcinoma cell lines and human diploid fibroblasts were examined for the production of extracellular matrix (ECM) molecules including fibronectin (FN), laminin (LN), and thrombospondin (TSP) when grown on a number of different substrates. The substrates used included glass, plastic, collagen (gelatin), and DEAE-dextran. Levels of TSP as indicated by enzyme-linked immunosorbent assay did not vary significantly as a function of substrate. In contrast, LN levels in the culture medium were significantly decreased when the cells were grown on DEAE-dextran or collagen-linked dextran as compared to the other substrates. FN levels were slightly lower in the culture medium of the cells grown on DEAE-dextran. Biosynthetic labeling followed by immunoprecipitation indicated that the reduction in LN was due, in part, to decreased biosynthesis. Previous studies have indicated that LN influences the behavior of epithelial cells in culture and that the cells, themselves, are a major source of the LN. The differences in LN production noted here indicate that the production of this ECM component is influenced by the substratum on which the cells are grown. These differences could contribute to alterations in biological properties that are known to be influenced by the substratum.
منابع مشابه
Anticancer effect of aqueous extract of Persia rose on Oral squamous cell carcinoma
Background and Aim: Conventional cancer treatments usually have complex complications. Also, the resistance of cancer cells to treatments is a special point that indicates the need for alternative therapies such as the use of herbal compounds. The aim of this study was to evaluate the anticancer effect of aqueous extract of Persia rose on oral cancer cell line. Material and Methods: In this exp...
متن کاملCD147 (Extracellular Matrix Metalloproteinase Inducer-EMMPRIN) Expression by Human Articular Chondrocytes
Background: Integrins are a family of transmembrane proteins that allow communication between the extracellular matrix and the interior of cells. Chondrocytes, cells of articular cartilage, express integrins and these molecules appear to have a variety of roles including mechanotransduction. Integrins are known to associate with a number of accessory molecules such as CD147 that may act to regu...
متن کاملFibronectin-guided migration of carcinoma collectives
Functional interplay between tumour cells and their neoplastic extracellular matrix plays a decisive role in malignant progression of carcinomas. Here we provide a comprehensive data set of the human HNSCC-associated fibroblast matrisome. Although much attention has been paid to the deposit of collagen, we identify oncofetal fibronectin (FN) as a major and obligate component of the matrix assem...
متن کاملساختار و مراحل ترمیم پوست
Skin injury caused by burns, surgery and other traumas may result in unpleasant psychological experiences and be reflected in behaviors. Extracellular matrix (ECM) is the largest component of natural skin which is gel-like and is produced by skin cells. ECM synthesis is a key factor for filling up skin wounds such as burns, leishmaniasis, chicken pox, acne, etc. ECM is composed of a variety of ...
متن کاملRegulation by epidermal growth factor of human squamous cell carcinoma plasminogen activator-mediated proteolysis of extracellular matrix.
The interaction of epidermal growth factor (EGF) with specific cell surface receptors initiates biochemical events in target cells which result in cellular proliferation and differentiation. In this report the regulation of extracellular-associated plasminogen activator (PA) production by EGF in human squamous cell carcinomas and its influence on tumor cell-mediated degradation of extracellular...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biotechnology and bioengineering
دوره 33 10 شماره
صفحات -
تاریخ انتشار 1989